
1© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Introduction

Prof. Bernd Bruegge, Ph.D.
Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering I
WS 2006/2007

2© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Intended audience

• Informatik Diplom students (“alte
Prüfungsordnung”)

• Informatik Bachelor students (“alte
Prüfungsordnung”)

• Computational science and engineering (CSE)
students

• Students taking Informatik as a minor
(“Nebenfach”)

3© 2006 Bernd Bruegge Software Engineering I WS 2006-07

This lecture is not intended for

• Bachelor students (“neue Prüfungsordnung”)
• Master student (“neue Prüfungsordnung”)
• Students with “Wahlfach Software Engineering”

• If you belong to any of these groups, you must take
• Software Engineering I: Softwaretechnik by Prof. Broy
• wwwbroy.in.tum.de/lehre/vorlesungen/sw_technik/WS0607

4© 2006 Bernd Bruegge Software Engineering I WS 2006-07

• Appreciate Software Engineering:
• Build complex software systems in the context of

frequent change

• Understand how to
• produce a high quality software system within time
• while dealing with complexity and change

• Acquire technical knowledge
• Acquire basic managerial knowledge

Objectives of the Class

5© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Assumptions for this Class

• Assumption:
• You are proficient in a programming language,
• You have no experience in the analysis or design of a

system
• You want to learn more about the technical and

managerial aspects of the development of complex
software systems

• Beneficial:
• You have had practical experience with a large

software system
• You have already participated in a large software

project
• You have experienced major problems

6© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Times, Locations and Credits
• Main lecture: MI HS 1, 00.02.001

• Tuesdays 12:15-13:45
• Wednesdays 9:15-10:00

• Exercises: Miniproject
• Scheduled for January

• Written Exams:
• Mid-term: Dec 20, 2006, Wednesday 9:00-10:30

• Location to be announced
• Final: Time and Location to be announced

7© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Grading and Credits: Bachelor Students

• Exercises: 20 %
• Mini-Project

• Mid-term: 30 %
• Final: 50 %

• Area: Informatics
• Hours per week: 3 lectures + 2 exercises
• ECTS Credits: 6

8© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Acquire Technical Knowledge

• Understand system modeling
• Learn a modeling notation (Unified Modeling

Language UML)
• Learn different modeling methods
• Learn how to use Tools
• Testing
• Model-based software development

9© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Acquire Basic Managerial Knowledge

• Software Project Management
• Software Lifecycle
• Rationale Management
• Configuration Management
• Methodologies

• Expansion on these topics:
• Course Software Engineering II in the Summer

10© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Outline of Today’s Lecture

• High quality software: State of the art
• Modeling complex systems
• Dealing with change
• Concepts

• Abstraction
• Modeling
• Hierarchy

• Organizational issues
• Lecture schedule
• Exercise schedule
• Associated Project

11© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Software Production has Poor Track
Record
• Example: Space Shuttle Software
• Cost: $10 Billion, millions of dollars more than

planned
• Time: 3 years late
• Quality: First launch of Columbia was cancelled

• Synchronization problem with the Shuttle's 5 onboard
computers.

• Substantial errors still exist
• Astronauts are supplied with a book of known software

problems "Program Notes and Waivers".

12© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Requirements

Software

Limitations of Non-engineered
Software

13© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Requirements

Software

Limitations of Non-engineered
Software

Vaporware

14© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Can you develop this system?

The impossible
Fork

15© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Physical Model of the
impossible Fork (Shigeo Fukuda)

Source http://neuro.caltech.edu/~seckel/mod/movies/fukuda/DisappearingColumn.mov

16© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Physical Model of the
impossible Fork (Shigeo Fukuda)

Source http://neuro.caltech.edu/~seckel/mod/movies/fukuda/DisappearingColumn.mov

17© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Why are software systems complex?

• The problem domain is difficult
• The development process is very difficult to

manage
• Software offers extreme flexibility
• Software is a discrete system

• Continuous systems have no hidden surprises (Parnas)
• Discrete systems can have hidden surprises!

18© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Software Engineering is more than
writing Code
• Problem solving

• Creating a solution
• Engineering a system based on the solution

• Modeling
• Knowledge acquisition
• Rationale management

19© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Techniques, Methodologies and Tools

• Techniques:
• Formal procedures for producing results

using some well-defined notation

• Methodologies:
• Collection of techniques applied across

software development and unified by a
philosophical approach

• Tools:
• Instruments or automated systems to

accomplish a technique
• CASE = Computer Aided Software

Engineering

20© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Computer Science vs
SoftwareEngineering

• Computer Scientist
• Assumes techniques and tools have to be

developed.
• Proves theorems about algorithms, designs

languages, defines knowledge
representation schemes

• Has infinite time…

21© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Computer Science vs Software
Engineering (cont’d)

• Engineer
• Develops a solution for a problem in an

application domain for a client
• Uses computers & languages, techniques and

tools

• Software Engineer
• Works in multiple application domains
• Has only 3 months...
• …while changes occurs in requirements and

available technology

22© 2006 Bernd Bruegge Software Engineering I WS 2006-07
20

Challenge: Dealing with complexity and
change

Software Engineering is a collection of techniques,
methodologies and tools that help with the
production of

a high quality software system
with a given budget
before a given deadline

 while change occurs

Software Engineering: A Working
Definition

23© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Software Engineering:
 A Problem Solving Activity
• Analysis:

• Understand the nature of the problem and break the
problem into pieces

• Synthesis:
• Put the pieces together into a large structure

For problem solving we use techniques,
methodologies and tools

24© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Course Outline

Dealing with Complexity
• Modeling
• UML Notation
• Requirements

Elicitation
• Requirements Analysis
• System Design
• Detailed Design
• Implementation &

Testing

Dealing with Change
• Rationale

Management
• Configuration

Management
• Software Project

Management
• Software Life Cycle
• Methodologies

Application of these Concepts: Project

25© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Lecture Outline

Introduction:
1. Introduction
2. Basic UML Notations
3. Advanced UML Notations

Project Management:
4. Organization
5. Project Communication

Requirements Analysis:
6. Requirements Elicitation
7. Functional Modeling
8. Object Modeling
9. Dynamic Modeling

26© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Lecture Outline (cont’d)

System Design:
10. Design Goals & System Decomposition
11. Architectural Styles
12. Addressing Design Goals

Object Design:
13. Reuse
14. Basic Design Patterns
15. Advanced Design Patterns
16. Object Constraint Language OCL
17. Interface Specification

Implementation:
18. Mapping Object Models to Java Code
19. Mapping Object Models to Relational Schema

27© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Lecture Outline (cont’d)

Testing:
• 20. Unit Testing
• 21. System and Usability Testing

Configuration Management:
• 22. Basic Concepts
• 23. Configuration Management Tools
• 24. Build Management

Software Lifecycle
• 25. Software Lifecycle Modeling

28© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Tentative Lecture Schedule

• Oct 31: Modeling with UML
• Nov 7: Project Organization &

Communication
• Nov 14: Functional Modeling
• Nov 21: Dynamic Modeling
• Nov 28: Architectural Styles
• Nov 30: Reuse
• Dec 5: No lecture
• Dec 12: Design Patterns
• Dec 19: Object Constraint

Language

• Nov 1: Holiday (Allerheiligen)
• Nov 8: Requirements

Elicitation
• Nov 15: Object Modeling
• Nov 22: Design Goals
• Nov 29: Addressing Design

Goals
• Dec 6: No lecture
• Dec 13: Interface Specification
• Dec 20: Mid-term

Tuesdays 12:15-13:45
 Oct 24: Introduction

Wednesday 9:15-10:00
• Oct 25: Introduction ctd

Subject to Change!

29© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Lecture Plan for January/February 2007

• Jan 9: Unit Testing
• Jan 16: System Testing
• Jan 23: Configuration

Management
• January 30: Software Lifecycle
• Feb 7: Miniproject

Presentations

• Final Exam: To be announced
• Tools: Subversion

(Configuration Management),
Maven (Web-Site Generation),
Ant, Cruise-Control (Build
Management()

• Jan 10: Integration Testing
• Jan 17: Build Management
• Jan 24: Software lifecycle
• Jan 31: Guest lecture
• Feb 8: Miniproject

Presentations II

Tuesdays 13:15-14:15 Wednesday 9:15-10:00

30© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Case Study: ARENA

• This project will be used in the lectures to
illustrate software engineering concepts and
artifacts

• ARENA specific models and documents will be
made available incrementally during the course

• ARENA’s source code is available
• http://sysiphus.in.tum.de/arena

31© 2006 Bernd Bruegge Software Engineering I WS 2006-07

32© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Playing TicTacToe within ARENA

33© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Mini Project: Asteroids

• Main Goal:
• Practice and apply the important concepts of the

lectures
• Become proficient in using and applying these concepts

• Context
• Asteroids Game
• Examples of an Asteroids Implementation:

• http://www.surfnetkids.com/games/asteroids-
game.htm

• Project Tasks:
• Addition of nonfunctional requirements to an existing

implementation of Asteroids using model-based
development techniques and design patterns

• Integration of Asteroids with ARENA

34© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Textbook

• Bernd Bruegge, Allen H. Dutoit:
• Object-Oriented Software Engineering: Using

UML, Design Patterns and Java, 2nd edition,
Prentice Hall, September 2003

• German Version:
• Bernd Brügge, Allen H. Dutoit: “Objektorientierte

Softwaretechnik mit UML, Entwurfsmustern und
Java, Pearson Education, Oktober 2004

• You can get a 10% discount for the english
edition, if you order from this URL

• www.pearson-
studium.de/main/main.asp?page=bookdetails&ProductI
D=111686

35© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Additional Readings

• Additional readings are announced for each
lecture

• Additional Readings for this lecture:
• K. Popper, “Objective Knowledge, an Evolutionary

Approach”, Oxford Press, 1979.

• Falsification

36© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Let’s start bruegge@in.tum.de Subject: SE 1
or Software Engineering 1

37© 2006 Bernd Bruegge Software Engineering I WS 2006-07

What is this?

38© 2006 Bernd Bruegge Software Engineering I WS 2006-07

1. Abstraction

2. Decomposition

3. Hierarchy

3 Ways to deal with Complexity

39© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Abstraction 10 24 2006

• Complex systems are hard to understand
• The 7 +- 2 phenomena

• Our short term memory cannot store more than 7+-2
pieces at the same time

• Chunking: Group collection of objects

• Abstraction allows us to ignore unessential details
• Two definitions for abstraction:

• Abstraction as activity: Abstraction is a thought
process where ideas are distanced from objects

• Abstraction as entity: Abstraction is the resulting idea
of a thought process where an idea is distanced from an
object

• Ideas can be expressed by models

40© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Model

• A model is an abstraction of a
system

• A system that no longer exists
• An existing system
• A future system to be built.

41© 2006 Bernd Bruegge Software Engineering I WS 2006-07

We can use models to describe
Software Systems

• Object model: What is the structure of
the system?

• Functional model: What are the
functions of the system?

• Dynamic model: How does the system
react to external events?

• System Model: Object model +
functional model + dynamic model

42© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Other models used to describe
Software System Development
• Task Model:

• PERT Chart: What are the dependencies
between tasks?

• Schedule: How can this be done within the
time limit?

• Organization Chart: What are the roles in the
project?

• Issues Model:
• What are the open and closed issues?

• What blocks me from continuing?
• What constraints were imposed by the client?
• What resolutions were made?

• These lead to action items

43© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Issue-Modeling
Issue:

What is the
Center of the

Universe?

Proposal1:
 The earth!

Proposal2:
The sun!

Pro:
 Copernicus

says so.

Pro:
 Aristotle
says so.

Pro:
 Change will disturb

the people.

Con:
Jupiter’s moons rotate

around Jupiter, not
around Earth.

Resolution (1615):
The church

decides proposal 1
is right

Resolution (1998):
The church declares

proposal 1 was wrong

Proposal3:
 Neither!

Pro:
 Galaxies are moving away

From each other.

44© 2006 Bernd Bruegge Software Engineering I WS 2006-07

2. Technique to deal with Complexity:
Decomposition
• A technique used to master complexity

(“divide and conquer”)
• Two major types of decomposition

• Functional decomposition
• Object-oriented decomposition

• Functional decomposition
• The system is decomposed into modules
• Each module is a major function in the

application domain
• Modules can be decomposed into smaller

modules.

45© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Decomposition (cont’d)

• Object-oriented decomposition
• The system is decomposed into classes (“objects”)
• Each class is a major entity in the application

domain
• Classes can be decomposed into smaller classes

• Object-oriented vs. functional decomposition

Which decomposition is the right one?

46© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Functional Decomposition
Top Level functions

Level 1 functions

Level 2 functions

Machine instructions

System
Function

Load R10 Add R1, R10

Read Input Transform Produce
Output

Transform Produce
OutputRead Input

47© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Functional Decomposition

• The functionality is spread all over the system
• Maintainer must understand the whole system to

make a single change to the system
• Consequence:

• Source code is hard to understand
• Source code is complex and impossible to maintain
• User interface is often awkward and non-intuitive.

48© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Functional Decomposition

• The functionality is spread all over the system
• Maintainer must understand the whole system to

make a single change to the system
• Consequence:

• Source code is hard to understand
• Source code is complex and impossible to maintain
• User interface is often awkward and non-intuitive

• Example: Microsoft Powerpoint’s Autoshapes
• How do I change a square into a circle?

?

49© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Autoshape

Functional Decomposition: Autoshape

Draw
Rectangle

Draw
Oval

Draw
Circle

Change Draw

Change
Rectangle

Change
Oval

Change
Circle

50© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Object-Oriented View

Autoshape

Draw()
Change()

51© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Nose
Eye

Ear

Chin

Mouth

Hair

Ellbow
Neck

Glove

Coat
Pocket

Cave

A Face!An Eskimo!

52© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Class Identification

• Basic assumptions:
• We can find the classes for a new software

system: Greenfield Engineering
• We can identify the classes in an existing

system: Reengineering
• We can create a class-based interface to an

existing system: Interface Engineering

53© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Class Identification (cont’d)

• Why can we do this?
• Philosophy, science, experimental evidence

• What are the limitations?
• Depending on the purpose of the system,

different objects might be found

• Crucial
Identify the purpose of a system

54© 2006 Bernd Bruegge Software Engineering I WS 2006-07

3. Hierarchy

• So far we got abstractions
• This leads us to classes and objects
• “Chunks”

• Another way to deal with complexity is to
provide relationships between these chunks

• One of the most important relationships is
hierarchy

• 2 special hierarchies
• "Part-of" hierarchy
• "Is-kind-of" hierarchy

55© 2006 Bernd Bruegge Software Engineering I WS 2006-07

I/O Devices CPU Memory

Part-of Hierarchy (Aggregation)

Computer

Cache ALU Program
 Counter

56© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Is-Kind-of Hierarchy (Taxonomy)

Cell

Muscle Cell Blood Cell Nerve Cell

Striate Smooth Red White Cortical Pyramidal

57© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Where are we now?

• Three ways to deal with complexity:
• Abstraction, Decomposition, Hierarchy

• Object-oriented decomposition is good
• Unfortunately, depending on the purpose of the

system, different objects can be found

• How can we do it right?
• Start with a description of the functionality of a system
• Then proceed to a description of its structure

• Ordering of development activities
• Software lifecycle

58© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Software Lifecycle Activities

Sub-
systems

Structured
by

class...
class...
class...

Source
Code

Implemented by

Solution
Domain
Objects

Realized by

Application
Domain
Objects

Expressed in
terms of

Test
Cases

?

Verified
By

class....?
Use Case

Model

System
Design

Object
Design

Implemen-
tation TestingRequirements

Elicitation Analysis

...and their models

59© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Software Lifecycle Definition

• Software lifecycle:
• Set of activities and their dependency

relationships to each other to support the
development of a software system

60© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Software Lifecycle Definition (cont’d)

• Typical Lifecycle questions:
• Which activities should I select for the

software project?
• What are the dependencies between

activities?
• How should I schedule the activities?

• These are the topics of the lecture on
software lifecycle modeling

61© 2006 Bernd Bruegge Software Engineering I WS 2006-07

What to do next?

• Read the ARENA case study (Chapter 4.6 in the
book)

• Read Chapter 2 for the next lecture on UML
Modeling

62© 2006 Bernd Bruegge Software Engineering I WS 2006-07

Summary
• Software development: Problem solving activity
• Goal of software engineering

• Provide techniques, tools and methodologies
• Develop quality software for a complex problem within a

limited time while things are changing

• Models
• System models, issue models, task models

• Ways to deal with complexity
• Decomposition, abstraction, hierarchy
• Functional & object-oriented decomposition

• Ways to do deal with change
• Software lifecycle
• Configuration management, Rationale management,

Project management

